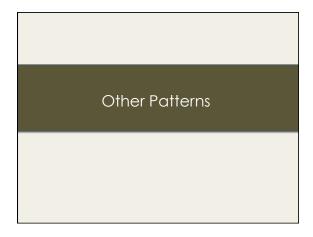


	ood Web	3110	JCT	ure	
Habitat	Food Web	Ταχα	n	с	%I
Terrestrial	Coachella Valley	30	29	0.31	90
	St. Martin Island	44		0.12	
	El Verde Rainforest	156	155	0.06	69
	UK Grassland			0.03	69
	Scotch Broom	154		0.03	
Lake/Pond	Skipworth Pond	35	25	0.32	92
	Bridge Brook Lake			0.17	
	Little Rock Lake			0.12	
Stream	Canton Creek			0.07	
	Stony Stream	112		0.07	
Estuary	Chesapeake Bay			0.07	
	St. Marks Estuary			0.10	
	Ythan Estuary, 1991			0.06	54
	Ythan Estuary, 1996	134	124	0.04	
Marine	Benguela			0.24	
	Carribean Reef, small			0.22	94
	NE US Shelf			0.22	94



Conclusions

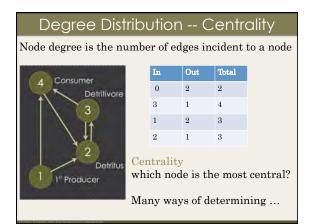
- Food webs can have modular form

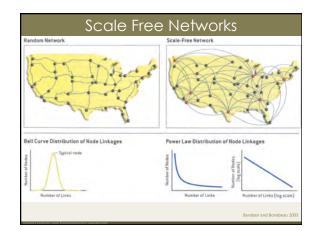
 not as much as we might expect given the stability or assembly hypotheses
- #K is not correlated with n
- Functional significance - Cycles distribute indirect effects

Small Worlds Compared to randomly constructed networks (RG) 1) node clustering is larger

2) maximum distance is lower than expected

Examples


Stanly Milgram's letter experiment

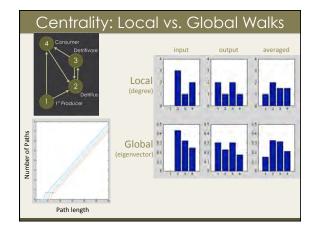

Watts & Strogatz 1998

6 degrees of {Kevin Bacon}

Consequence

Movement in the network is faster than in RG with same {n,C}

Robustness to Node Deletion


Consequences of scale free pattern include

- 1) robustness to random attacks (node deletion)
- 2) increased sensitivity to targeted attacks

Albert and Barabasi demonstrated this for the internet.

Dunne et al. 2002 Found that few food webs exhibit the scale-free distributions, but the distributions are not Poisson either.

NETWORK	NODES	LINKS	
Cellular metabolism	Molecules involved in burning food for energy	Participation in the same biochemical reaction	
Hollywood	Actors	Appearance in the same movie	
Internet	Routers	Optical and other physical connections	
Protein regulatory network	Proteins that help to regulate a cell's activities	Interactions among proteins	
Research collaborations	Scientists	Co-authorship of papers	
Sexual relationships	People	Sexual contact	
World Wide Web	Web pages	URLs Barabasi and Bonat	

Other Topics

- Network Motifs
- Frequency of smaller patternsMixing Patterns/ Assortativity
- Node types by pattern
- Community Structure (modularity) – Clustering Analysis
- Hierarchical Clustering
- Betweeness Centrality
- Generative Models
 - Infer rules to grow networks with given patterns
- Preferential Attachment Algorithm
- Graph Layout Algorithms

Suggested Activities

Each Person/Team Should Select a Model Use enaR to complete the activities

Activity: Network Structural Properties

- Load oyster reef model & perform structural analysis
 - load(enaR)
 - data(oyster)
- S=enaStructure(oyster)
- Extract adjacency matrix
 - -A=SA
- Network Statistics
 - S\$ns

Activity: Pathways Enumeration

- Load the Oyster Reef Model & get A
- Calculate A^2 mExp(A,2)
- Calculate A^3
- Can you identify all 4 pathways from node 2 to itself of length 3?
- Use a for-loop to get the data to plot the relationship between path length and the number of paths.